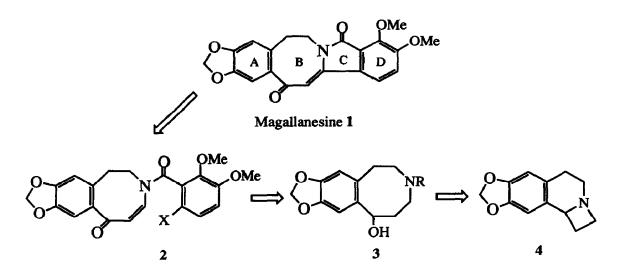


Tetrahedron Letters, Vol. 35, No. 22, pp. 3749-3752, 1994 Elsevier Science Ltd Printed in Great Britain 0040-4039/94 \$7.00+0.00

0040-4039(94)E0678-Q

A Total Synthesis of Magallanesine via [1, 2]-Meisenheimer Rearrangement

Ryuji Yoneda, Yasuhiko Sakamoto,[#] Yoshifumi Oketo, Kayoko Minami, Shinya Harusawa, and Takushi Kurihara*


Osaka University of Pharmaceutical Sciences, 2-10-65 Kawai, Matsubara,

Osaka 580, Japan

Abstract: A straightforward synthesis of magallanesine 1 from azetoisoquinoline 4 has been accomplished via [1,2]-Meisenheimer rearrangement and an intramolecular Heck cyclization as the key reactions.

Members of the plant family *Berberidaceae* have long been known to contain a number of alkaloids, and recently the first example of a new class of isoindolobenzazocine alkaloid, magallanesine 1, was isolated from *Berberis Darwinii* Hook, collected in southern Chile.^{1,2} The only total synthesis, in 1989, was reported by Danishefsky using an amide acetal-mediated intramolecular cyclization of a methylketone thioimide with activated phthalimide.³ The unique structure of 1 including the medium-ring nitrogen heterocycles, azocine ring, which are generally the most difficult to prepare by the use of conventional cyclization methods,⁴ was of synthetically interest. As an extension of our program to assess the feasibility of preparing oxa-bridged, fused azocine ring based on rearrangement of fused azetopyridine *N*-oxide,⁵ we report herein a straightforward synthesis of magallanesine 1.

Our synthetic strategy is designed mainly aiming at that isoindolobenzazocine skeleton might be constructed from N-benzoyl enaminone 2 via palladium mediated 5-exo-trig cyclization.^{6,7} The substrate 2 may be obtained from azetoisoquinoline 4 via [1,2]-Meisenheimer rearrangement of the corresponding N-oxide followed by standard chemical transformations through intermediate 3.

The sequence to the required 3 starts from unsaturated ester 5, prepared from piperonal.⁸ Catalytic hydrogenation of 5 followed by LiAlH4 reduction gave alcohol 7, which could be converted to chloride 8 in 90% overall yield from 5 (chart 1). Base catalyzed cyclization⁹ of 8 gave 4^{10} (72% yield), which was oxidized with H₂O₂ followed by quenching with PtO₂¹¹ to give the corresponding *N*-oxide 9. Refluxing of 9, without purification, in THF gave the best result to lead the [1,2]-Meisenheimer rearrangement product 10^{10} in 64% yield. Catalytic hydrogenation of 10 gave hydroxybenzazocine 11 quantitatively.

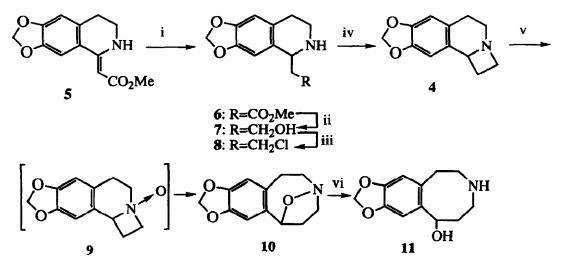


Chart 1

i: 10% Pd-C/H₂, AcOH-MeOH (1:1), 4 Kg/cm², R.T., 100%; ii: LiAlH₄, THF, 0°C, 10 min, 93%; iii: SOCl₂, CH₂Cl₂, reflux, 2 h, 97%; iv: NaOMe (1.5 equiv.), MeOH, reflux, 1.5 h, 72%; v: 35% H₂O₂, MeOH-CHCl₃ (1:1), R.T., 16 h; PtO₂ (0.01 equiv.), R.T., 5 h, then THF, reflux, 1 h, 64%; vi: 10% Pd-C/H₂, MeOH, 1 Kg/cm², R.T., 100% Treatment of 11 with acid chloride 12^{12} afforded amide 13 (94%), which was oxidized with Dess-Martin reagent¹³ in CH₂Cl₂ to give azocinone 14 in 95% yield (Chart 2). Introduction of a double bond was effected by conditions, which employ phenylsulfenylation, *m*CPBA oxidation followed by subsequent thermolysis of sulfoxide in toluene, to afford approximately a 4:1 mixture [¹H NMR of olefinic protons: δ 6.01 and 6.39 (d, *J*=9.3 Hz) for *cis* and δ 6.33 and 7.10 (d, *J*=9.3 Hz) for *trans*] of *cis*- and *trans-N*-benzoyl enaminone 16¹⁴ in 67% overall yield from 14. Finally, construction of the C-ring of 1 was investigated by an intramolecular Heck reaction.¹⁵ After several attempts, ring closure of 16 was successfully accomplished by means of a modified Heck cyclization^{15b} with Pd(OAc)₂ and TiOAc in the presence of PPh₃ in DMF to provide a 93% yield of yellow powder. Its melting point (254-256°C) and spectral data (¹H-NMR, ¹³C-NMR, IR, and UV) were identical with those reported for magallanesine 1.¹

Chart 2

i: 5-Bromo-2,3-dimethoxybenzoyl chloride 12 (1.2 equiv.), 10% NaOH (1 equiv.), DME, R.T., 94%; ii: Dess-Martin Reagent (1.5 equiv.), CH_2Cl_2 , R.T., 20 min, 95%; iii: (TMS)₂NLi, HMPA, THF, -78°C, 20 min, then (PhS)₂ (2 equiv.), -78°C to R.T., 1 h; iv: mCPBA (1 equiv.), CH_2Cl_2 , R.T., then reflux in toluene, 2 h, 67% from 14; v: Pd(OAc)₂ (10 mol %), Ph₃P (0.2 equiv.), TiOAc (1.2 equiv.), DMF, 130°C, 24 h, 93%

In summary, this report has demonstrated that the [1,2]-Meisenheimer rearrangement of fused azetopyridine provides a convenient entry to oxa-bridged, fused azocine systems.

Acknowledgements This work was supported finacially by Nippon Shoji Kaisha, Ltd. is gratefully acknowledged. We thank Mrs M. Fujitake of our university for measurements of mass spectra.

References and Notes

Present address: Research Laboratories, Nippon Shoji Kaisha, Ltd, Ibaraki City, Osaka, Japan.

- 1. Valencia, E.; Fajardo, V.; Freyer, A.J.; Shamma, M., Tetrahedron Lett., 1985, 26, 993-996.
- 2. Before isolation from natural sources, magallanesine 1 had already been obtained from oxyberberine via dichlorocarbene adduct : Manikumar, G.; Shamma, M., J. Org. Chem., 1981, 46, 386-389.
- 3. Fang, F.G.; Feigelson, G.B.; Danishefsky, S.J., Tetrahedron Lett., 1989, 30, 2743-2746.
- 4. For reviews of the medium-sized heterocycles, see: Evans, P.A.; Holmes, A.B., Tetrahedron, 1991, 47, 9131-9166. Glass, R.S., Ed., Conformational Analysis of Medium-Sized Heterocycles.; VCH Publishers, Inc., 1988.
- 5. Kurihara, T.; Sakamoto, Y.; Takai, M.; Ohuchi, K.; Harusawa, S.; Yoneda, R., Chem. Pharm. Bull., 1993, 41, 1221-1225.
- For reviews of the Heck reaction, see: Heck, R.F., in Comprehensive Organic Synthesis; Trost, B.M., Ed; Pergamon Press: Oxford, 1991; Vol. 4, p 833-863. Heck, R.F., Org. React., 1982, 27, 345-390. Trost, B.M.; Verhoeven, T.R., in Comprehensive Organometallic Synthesis; Wilkinson, G., Ed.; Pergamon Press: Oxford, 1982; Vol. 8, p 799-938. Daves, G.D.Jr.; Hallberg, A., Chem. Rev., 1989, 89, 1433-1445.
- a) The palladium mediated 5-endo-trig cyclization of N-unsubstituted or N-alkyl enaminones to 3-substituted indoles were reported, see: Kasahara, A.; Izumi, T.; Kikuchi, T., J. Heterocycl. Chem., 1987, 24, 1555-1556. Kasahara, A.; Izumi, T.; Murakami, S.; Yanai, H.; Takatori, M., Bull. Chem. Soc., 1986, 59, 927-928. lida, H.; Yuasa, Y.; Kibayashi, C., J. Org. Chem., 1980, 45, 2938-2942; b) To our knowledge, there has been only one report about 5-exo-trig cyclization of N-benzoyl enaminone under Heck reaction conditions, see: Kraus, G.A.; Kim, H., Synth. Commun., 1993, 23, 55-64.
- 8. Sano, T.; Toda, J.; Kashiwaba, N.; Ohshima, T.; Tsuda, Y., Chem. Pharm. Bull., 1987, 35, 479-500.
- 9. Kóbor, J.; Fülöp, F.; Bernáth, G.; Sohár, P., Tetrahedron, 1987, 43, 1887-1894.
- 10. All new compounds were characterized by ¹H-NMR, IR, and HRMS and/or elemental analyses.
- 11. Rautenstrauch, V., Helv. Chim. Acta, 1973, 56, 2492-2508.
- The acid chloride 12 was prepared from known carboxylic acid (Auerbach, J.; Weissman, S.A.; Blacklock, T.J.; Angeles, M.R.; Hoogsteen, K., *Tetrahedron Lett.*, 1993, 34, 931-934) by treatment with thionyl chloride.
- 13. Dess, D.B.; Martin, J.C., J. Org. Chem., 1983, 48, 4155-4156. Idem., J. Am. Chem. Soc., 1991, 113, 7277-7287. Ireland, R.E.; Liu, L, J. Org. Chem., 1993, 58, 2899.
- 14. The cis and trans designations of amide followed the reference: Azumaya, I.; Kagechika, H.; Fujiwara, Y.; Itoh, M.; Yamaguchi, K.; Shudo, K., J. Am. Chem. Soc., 1991, 113, 2833-2838.
- Recent examples of the intramolecular Heck reaction, see: a) Abelman, M.M.; Oh, T.; Overman, L.E., J. Org. Chem., 1987, 52, 4130-4133; b) Grigg, R.; Loganathan, V.; Santhakumar, V.; Sridharan, V.; Teasdale, A., Tetrahedron Lett., 1991, 32, 687-690; c) Ishibashi, H.; Ito, K.; Hirano, T.; Tabuchi, M.; Ikeda, M., Tetrahedron, 1993, 49, 4173-4182; d) Chida, N.; Ohtsuka, M.; Ogawa, S., J. Org. Chem., 1993, 58, 4441-4447; e) McIntosh, M.C.; Weinreb, S.M., *ibid.*, 1993, 58, 4823-4832; ; f) Rice, J.E.; Cai, Z-W., *ibid.*, 1993, 58, 1415-1424.

(Received in Japan 18 January 1994; accepted 16 March 1994)